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The Institute of Electrical and Electronics Engineers’ Standard Dictionary of Measures of
the Software Aspects of Dependability (982.1) has been scheduled for updating. This standard
was issued several years ago. Since then new software reliability metrics have been developed
and evaluated. In addition, modifications of metrics in the standard have developed and
evaluated. The objective of this paper is to describe, evaluate, and apply the new and modified
metrics, using failure data from several releases of the NASA Space Shuttle flight software.
Recognizing that users of standards have other applications, the methodology, equations,
and prediction plots are explained so that reliability engineers can apply the metrics to their
applications. The metrics are assessed from two standpoints: 1) identify metrics that support
a specified purpose (e.g., demonstrate reliability growth) and 2) use these metrics to identify
software releases that, based on reliability predictions, are ready to deploy and identify which
software requires additional testing. Prediction accuracy is computed for all metrics and the
metrics are compared based on the results.

I. Objective

Our objective is to introduce new and modified metrics – new in the sense that they were not included in the Institute
of Electrical and Electronics Engineers’ (IEEE) Standard Dictionary of Measures of the Software Aspects of

Dependability (982.1) [1]. (In plain English, this standard is about software reliability metrics!) Modifications are
made to selected original metrics to enhance their usability. In addition, we examine the justification of assumptions
that support the validity of the metrics. Also, as well as the metrics themselves, there are the trends in metrics, which
indicate whether reliability growth is being achieved, that we add to the metrics toolkit. We propose that the metrics
we describe and analyze be included in the next version of the standard. To assess the validity of predictive metrics,
we compute the mean relative error (MRE) between predicted and actual values.

Where predictive reliability metrics are introduced or modified, we use the Schneidewind Software Reliability
Model (SSRM) [2]. Other models recommended in the IEEE/AIAA Recommended Practice on Software Reliability
[3] could be used. In software reliability analysis, there are various time values: failure time, time when a prediction
is made, time for which a prediction is made, etc. We designate all of these as Ti , where i identifies an event (e.g.,
failure i) or an interval of test or operational time of the software.

To validate the metric computations, we compared C++ program results with Excel computation results for the
Shuttle releases [operational increments (OIs)]. The computations were not considered validated until the C++
program and Excel computations matched.
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II. Reliability Metric Assumptions
A. Independence of Successive Failures

Some researchers [4] claim that the assumption of independence of successive software failures in applying
software reliability models is inappropriate. Whether this is true depends on the kind of testing that is conducted.
Sometimes different test scenarios are grouped according to high-level functionalities and a series of related test runs
are conducted. In addition, input data may be chosen to increase the testing effectiveness, that is, to detect as many
faults as possible. As a result, once a failure is observed, series of related test runs are conducted to help isolate the
cause of failure. This would also be the case during debugging when successive failures could be dependent because
debugging is a fine-grained search for specific faults that may be violating the specification. On the other hand, the
failure data that drives software reliability models is obtained during system tests of program functions. Given the
enormity of the input and program space, it is unlikely that two faults could cause two successive failures to be
related [5]. This is particularly the case if random selection of inputs is used in system testing. Rather than make an
assumption that may turn out to be erroneous, the data should be subjected to an autocorrelation test, using a statistical
package. For example, to test the assumption of independence of successive failures, we computed and plotted the
autocorrelation functions for several National Aeronautics and Space Administration (NASA) space systems, using
time to next failure Ti . The autocorrelation function is defined in Eq. (1) [6]:

Autocorrelation (Ti, �t) = Correlation(Ti, Ti + �t), (1)

where �t represents the lag between values of Ti . For example, �t = 1 represents the series Ti , Ti+1, Ti+2, etc.,
�t = 2 represents the series Ti , Ti+3, Ti+5, etc. When computing the autocorrelation function, confidence intervals
of the function are produced to see when the function, plotted for various lags, falls outside the intervals. When this
is the case, a high degree of correlation is indicated. In Figs. A1 to A4 in the Appendix, for the NASA Space Shuttle
flight software there is no significant correlation, which indicates that the independence assumption is justified for
these data. However, in the case of the NASA satellite project JM1 in Fig. A5, there is significant autocorrelation for
�t = 1. Therefore, it would not be appropriate to use a model to predict the series Ti , Ti+1, Ti+2, etc. As there is no
significant correlation at other values of �t , predictions could be made, for example, of series Ti , Ti+5, Ti+9, etc.

A word about accounting for the passage of time: in some cases, time is measured at an instance in time, for
example, a prediction of time to next failure. In other cases, time is measured in intervals, for example, failures that
occur in the interval (Ti+1 − Ti).

III. New Software Reliability Metrics
A. Time Between Failures Trend

If the trend of a series of time between failures increases, a reliability growth is suggested, as expressed in Eq. (2):

Mi+1 = (Ti+2 − −Ti+1) > Mi = (Ti+1 − −Ti) (2)

B. Trend Analysis
A method is needed to ascertain whether the trend in a series like Eq. (2) indicates reliability growth. One such

method by Bates [7] is:

Ui =
∑Ni

i=1 Mi−((Ni/2)(Ti))

Ti

(√
Ni

12

) (3)

where Ni is the actual cumulative number of failures at interval i, Ti is the time during which the Ni failures occur,
and Mi is the series being examined. With Mi = (Ti+1 − Ti), increasing positive values of Ui indicate reliability
growth [5].
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C. Predicted Software Reliability
Strangely, software reliability was not included in 982.1. Using SSRM, reliability is predicted in Eq. (4):

R(Ti) = exp(−(α/β){exp[−β(Ti − s + 1)] − exp[−β(Ti − s + 2)]}) (4)

where α is initial failure rate, β is rate of change of failure rate, Ti is the time for which the prediction is made, and
s is the first time interval at which failure data are used in the estimation of parameters α and β.

D. Actual Software Reliability
In addition to predicted reliability, we can compute the actual reliability Ra(Ti), based on failures observed in

interval i, xi , in relation to the total cumulative number of failures observed at interval t , Xt , in Eq. (5):

Ra(Ti) = 1 − (xi/Xt) (5)

E. Reliability Required to Meet Mission Duration Requirement
The original 962.1 does provide metrics for meeting the mission duration requirement by predicting the time

to next failure and seeing whether the prediction exceeds the mission duration. Another approach is to predict the
reliability at the mission duration Tm plus mission start, or launch, time Ts (nominally the last test time), and see
whether the result meets the required reliability during the mission. This is accomplished by reformulating Eq. (4)
in Eq. (6).

R(Ts + Tm) = exp[−(α/β)(exp{−β[(Ts + Tm) − s + 1]} − exp{−β[(Ts + Tm) − s + 2]})] (6)

F. Rate of Change of Software Reliability
In addition to the predicted software reliability, its rate of change is also important to identify the amount of

test or operational time at which the rate of change is maximum. Beyond this time, increases in reliability yield
diminishing returns, although additional reliability may be warranted to meet reliability requirements. The rate of
change is formulated by differentiating Eq. (4) and is given in Eq. (7):

d[R(Ti)]
d(Ti)

= αR(Ti) exp[−β(Ti − s + 1)] − exp[−β(Ti − s + 2)] (7)

G. Parameter Ratio
In [3] it has been demonstrated that the parameter ratio (PR) = β/α from SSRM can accurately rank the reliability

of a set of software modules or releases, before extended effort is involved in making reliability predictions, by just
using the result of parameter estimates. That is, increasing values of PR are associated with increasing values of
reliability. The reason is – referring to the definitions above – high values of β mean that the failure rate decreases
rapidly and small values of α mean that the failure rate decreases from a low starting value. The two parameters in
concert, computed in PR, leads to increasing reliability, as can be seen by examining Eq. (4).

H. Software Restoration Time
When software fails and the fault that was the culprit is corrected, the question is ‘How long will it take to

restore the system to the specified reliability?’† This metric was suggested by Harold Williams, Editor of The R
& M Engineering Journal, American Society for Quality. This metric can be obtained by solving Eq. (4) for Ti –
the restoration time – specifying R(Ti) as the required reliability when the system has been restored. The result is
Eq. (8):

Ti =
(

−1

β

)
log

{ − log[R(Ti)β]
α[1 − exp(−β)]

}
+ (s − 1) (8)

I. Predicted Cumulative Failures
In 982.1, there is no prediction of cumulative failure, which is a fundamental reliability growth measure [i.e.,

F(Ti) will increase at a decreasing rate if reliability growth is present). Therefore, cumulative failures are predicted

† Email correspondence with the author.
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(using SSRM) [2] in Eq. (9).

F(Ti) =
(

α

β

)
{1 − exp[−β(Ti − s + 1)]} + Xs−1, (9)

where F(Ti) uses the definitions: Ti is the time when F(Ti) failures are predicted to occur and Xs−1 is the observed
failure count in the range (s − 1, Ti).

J. Fault Correction Rate and Delay
Our approach to fault correction prediction is to relate it to failure prediction, introducing a delay, dT, between

failure detection and the completion of fault correction (i.e., fault correction time) [8]. We assume that the rate of
fault correction is proportional to the rate of failure detection. In other words, we assume that fault correction keeps
up with failure detection, except for the delay d(Ti) in correcting fault i. If this assumption is not met in practice, the
model will underestimate the remaining faults in the code. Thus, the model provides a lower bound on remaining
faults (i.e., the remaining faults would be no less than the prediction). Using this assumption, the cumulative number
of faults corrected by time Ti , Nci , would have the same form as the cumulative number of failures F(Ti) that have
been detected by time Ti , but delayed by the interval d(Ti). The fault correction rate for fault i is modeled in Eq. (10),
where xi is the number of faults corrected in interval i:

ci = xi

(Ti+1 − Ti)
(10)

We use a random variable to model the delay d(Ti). For the Space Shuttle, d(Ti) was found to be exponentially
distributed with mean fault correction time 1/mi , where mi is the mean fault correction rate in interval i in Eq. (11).

mi =
i∑

i=1

{[
xi

(Ti+1 − Ti)

]/
Nci

}
(11)

This distribution was confirmed for the Shuttle, using a sample of 85 fault correction times and the Kolmogorov–
Smirnof test, resulting in p = 0. In addition, Musa found that failure correction times were exponentially distributed
for 178 failure corrections [5].

The great variability in fault correction time that we found in both the Shuttle and Goddard Space Flight Center
data means we emphasize predicting limits instead of expected values. For a given mean fault correction rate mi , the
cumulative probability distribution F(dTi ) of the fault correction delay dTi is used to specify an upper limit of d(Ti).
The concept is to bound the delay time, for example at F(dTi ) = 0.99, and to use this limit in the fault correction
delay prediction. Thus, when making predictions, there would be high confidence that the actual delay is within the
limit (e.g., probability of 0.01). The equation for F(dTi ) for the cumulative exponential distribution, when using mi,

computed in Eq. (11) is:

F(dTi ) = 1 − exp[−(mi)(dTi )] (12)

Eq. (12) is manipulated to produce Eq. (13), which is used to compute the limit of d(Ti), using the specified
limit F(dTi ):

d(Ti) = {− log[1 − F(dTi )]}
mi

(13)

K. Cumulative Number of Faults Corrected
Knowing the correction rate for fault i from Eq. (10) and the time between failures from Eq. (2), assuming these

times are equal to the times between faults, we can predict the cumulative number of faults corrected, Nci , at interval
i in Eq. (14) [8].

Nci =
Nci−1∑
i=1

[ci(Ti+1 − Ti)] (14)
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L. Proportion of Faults Corrected
Now having predicted the number of cumulative faults corrected in Eq. (14) and using the cumulative number

of actual failures Ni , observed at interval i, and assuming the number of faults equals the number of failures, we
compute the proportion of faults corrected at interval i in Eq. (15) [8]:

Pci = Nci

Ni

(15)

M. Predicted Failure Rate
It is important to have a prediction of failure rate that can take into account future test or operational time, for

example, mission duration. The predicted failure rate is the derivative of the predicted cumulative failures in Eq. (9).
The result is Eq. (16) [9]:

f (Ti) = d[F(Ti)]
d(Ti)

= α exp{exp[−β(Ti − s + 1)]} (16)

N. Predicted Number of Failures in Interval i
In addition to predicting cumulative failures, which aggregates failure count, a fine-grain prediction can be applied

to the interval i. With this prediction, failures can be tracked from interval to interval to see whether any anomalies
occur. Using SSRM [2], the prediction is made in Eq. (17):

m(Ti) =
(α

β

)
{exp[−β(Ti − s + 1)] − exp[−β(Ti+1 − s + 1)]} (17)

O. Predicted Normalized Number of Failures in Interval i
Although Eq. (17) is very useful as a predictor of software quality, large values of m(Ti) could simply be the

result of large programs producing large numbers of failures! Therefore, we can normalize m(Ti) by the size of the
program S, in thousand lines of code (KLOC), as shown in Eq. (18).

M(Ti) = m(Ti)

S
(18)

P. Predicted Maximum Number of Failures (at Ti = ∞)
It is important to predict the number of failures over the life of the software. Software is crucial to the economy

and infrastructure of a nation, so it is seldom discarded. Rather, it is maintained and upgraded. Thus, the prediction
of total number of failures over the life of the software is highly relevant. To ensure that we have a conservative
prediction of this metric, infinity is used as its life in Eq. (9), which results in Eq. (19).

F(∞) =
(α

β

)
+ Xs−1 (19)

Q. Predicted Maximum Number of Remaining Failures
Additionally, the predicted maximum number of remaining failures is an excellent indicator of residual faults

and failures that remain after testing is complete. This metric is computed by subtracting the cumulative number of
failures Xt observed at the previous test time t , from Eq. (19). This is done in Eq. (20).

RF(T ) =
(α

β

)
+ Xs−1 − Xt (20)

R. Predicted Operational Quality
According to the former manager of the Shuttle flight software development, predicted operational reliability

(1 – fraction remaining failures) is an excellent managerial tool for assessing the overall quality of the software
because it indicates – on a fractional (percentage) basis – the extent of fault and failure removal [10]. This metric is
computed by using Eqs. (19) and (20), which results in Eq. (21):

Q(t) = 1 −
[
RF(t)

F (∞)

]
(21)
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S. Probability of xi Failures
It is time now to address the probability that failures will occur because this metric provides the software developer

with a measure of risk of operating the software. Most failure processes during test fit the Poisson process [5]. Thus,
the probability of xi failures occurring during interval i is formulated:

P(xi) = [(mi)xi exp(−mi)]
xi ! (22)

where mi is the mean number of failures in interval i, computed as a cumulative value:

mi = xi∑i
i=1 xi

(23)

The reason for computing Eq. (23) as shown, rather that summing to the total number of failures, is that the latter
quantity would not be known at the time of making the computation. Thus, we sum to the last known interval i.

T. Predicted Number of Faults Remaining
Once the maximum number of failures over the life of the software and the cumulative number of faults corrected

have been predicted, the number of faults remaining to be corrected at interval i can be predicted using Eq. (24),
assuming one-to-one correspondence between faults and failures. To make the prediction, we call upon Eq. (14)
(cumulative number of faults corrected, Nci) and Eq. (19) (maximum number of failures, F(∞):

Rci = F(∞) − Nci (24)

U. Predicted Fault Correction Quality
Then, having predicted the number of faults remaining to be corrected in Eq. (24), the fault correction quality at

interval i can be predicted in Eq. (25), where higher values correspond to higher fault correction quality:

Qci = 1 −
[

Rci

F (∞)

]
(25)

V. Weighted Failure Severity
Up to this point nothing has been said about failure severity. We have been treating failures as if they were equal in

severity. Of course, they are not. In the following formulation, we develop a weighted severity metric for a software
release. Designating si as the severity of fault i, sm as the maximum value of si (minimum severity), wr as the severity
weight of software release r , xi as the number of failures of severity si , and N as the number of failures that have
occurred on release r , wr is computed in Eq. (26).

For example, si = 1, 2, 3, 4, and 5, where si = 1 is the most severe, and si = 5 = sm is the least severe. The
higher the value of wr , the lower the quality of the software release. Table 1 shows the definition of the failure code
used in the computation of weighted failure severity:

wr =
N∑

i=1

(
xi ∗

{
1 −

[
(si − 1)

sm

]})/
N (26)

Table 2 is a compilation of the definitions of new metrics, as expressed in the above equations.

Table 1 Definition of failure severity code

Code Definition

s1 Loss of life or system
s2 Affects ability to complete mission objectives
s3 Workaround available, therefore minimal effects on procedures – mission objectives met
s4 Insignificant violation of requirements or recommended practices, not visible to user in operational use
s5 Cosmetic issue which should be addressed or tracked for future action, but not necessarily a present problem
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Table 2 Definition of new software reliability metrics

Metric Purpose Data requirement Parameter estimates

Time between failures trend,
Mi

Demonstrate reliability
growth

Failure time, Ti

Trend analysis, Ui Demonstrate reliability
growth

Mi , Ti; Actual cumulative
failures, Ni

Software reliability, R(Ti) Predict reliability Prediction time, Ti Failure rate parameters,
α, β, s

Reliability to meet mission
duration, R(ts + tm)

Demonstrate required
reliability

Mission start time, ts;
Mission duration, tm

α, β, s

Actual reliability, Ra(Ti) Assess empirical (i.e.,
historical) reliability

Number of failures in
interval i, xi ; total
number of failures at
interval t , Xt

Rate of change of reliability,
d[R(Ti)]/d(Ti)

Identify Ti where gain in
R(Ti) is maximum

R(Ti), Ti α, β, s

Parameter ratio Rank reliability of releases α, β

Software restoration time,
Ti

Predict time when software
will return to its specified
reliability R(Ti)

R(Ti) α, β, s

Predicted cumulative
failures, F(Ti)

Demonstrate reliability
growth

Ti α, β, s; observed
failures in the range
1, s − 1, Xs−1

Fault correction rate, ci Predict rate of fault
correction

Ti , Ti+1, xi

Fault correction delay, d(Ti) Predict delay in correcting
faults

Specified limit, F(dTi );
mean fault correction
rate, mi

Cumulative number of faults
corrected, Nci

Assess progress in fault
correction

ci ;Ti , Ti+1

Proportion of faults
corrected, Pci

Identify variation in fault
correction by fault i

Nci , cumulative number of
failures, Ni

Predicted failure rate, f (Ti) Predict future failure rate Ti α, β, s

Predicted number of failures
in interval i, m(Ti)

Predict failures on
fine-grained basis

Ti , Ti+1 α, β, s

Predicted normalized
number of failures in
interval i, M(Ti)

Include program size in
failure predictions

m(Ti); program size, S

Predicted maximum number
of failures, F(∞)

Predict failures over the life
of the software

α, β, Xs−1

Predicted maximum number
of remaining failures,
RF(t)

Predict residual failures over
the life of the software

α, β, Xs−1; number of
observed failures, Xt

Predicted operational
quality, Q(t)

Predict overall quality of
software

RF(t), F(∞)

Probability of xi failures,
P(xi)

Assess risk of operating
software

Mean number of failures in
interval i, mi , xi

Predicted number of faults
remaining, Rci

Determine whether the
software is ready to
deploy

F(∞), Nci

Predicted fault correction
quality, Qci

Assess fault correction
process

Rci , F(∞)
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IV. Modified Software Reliability Metrics
A. Actual Mean Time to Failure

Whereas 982.1 computes the mean value of (Ti+1 − Ti) over the total (Ti+1 − Ti) and cumulative failure count,
we can obtain a refined assessment by computing a value for each failure i, as in Eq. (27):

Ma(Ti) =
∑Ni

i=1(Ti+1 − Ti)

Ni

(27)

where Ni is the number of cumulative failures at failure i.

B. Predicted Mean Time to Failure
The original 982.1 used SSRM to make this prediction. We have found that Eq. (28) will result in less error (MRE)

than the original model:

Mp(Ti) =
Ni∑
i=1

(Ti+1 − Ti)

F (Ti)
, (28)

where F(Ti) is the predicted cumulative failures from Eq. (9).
Reliability growth would be demonstrated by an increasing Ma(Ti) and Mp(Ti), as a function of test time Ti .

C. Actual Failure Rate
Although 982.1 includes an incremental failure rate computed by dividing incremental failures by incremental

test or operational time, we now include an actual failure rate, Eq. (29) designed to demonstrate reliability growth,
if it exists:

f (xi, Ti) =
∑i

i=1 xi

Ti

, (29)

where xi is the failure count in time interval i and Ti is the time when xi failures have been observed. Thus, it can be
seen that Eq. (29) computes the failure rate on a cumulative basis.

Table 3 is a compilation of modified software reliability metrics, based on the above equations.

V. Reliability Metrics Prediction Results
In this section we show results from predictions, using the equations that have been presented and selected OIs

of the Shuttle. Each subsection is dedicated to the purpose of the metrics, as identified in Tables 2 and 3.

A. Demonstrate Reliability Growth
1. Trend Analysis, Ui

Figure 1 demonstrates reliability growth by virtue of the trend metric Ui increasing in the positive direction. A
reliability engineer can use this kind of plot to test for reliability growth, for various reliability data, such as failure
count – the technique is not limited to time-to-next failure trend.

Table 3 Definition of modified software reliability metrics

Metric Purpose Data requirement Parameter estimates

Actual mean time to failure,
Ma(Ti)

Assess empirical (i.e.,
historical) reliability and
demonstrate reliability
growth

Ti , Ti+1; actual cumulative
failures, Ni

Does not apply

Predicted mean time to
failure, Mp(Ti)

Predict future reliability and
demonstrate reliability
growth

Ti , Ti+1; predicted cumulative
failures, F(Ti)

Does not apply

Actual failure rate, f (xi , Ti) Estimate empirical (i.e.,
historical) failure rate

Ti ; number of failures in
interval i, xi

Does not apply
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Fig. 1 Time to next failure trend Ui versus test time Ti.

Fig. 2 Shuttle OI3: cumulative failures and MTTF versus test time Ti.

2. Cumulative Failures, F(Ti), Mean Time to Failure
Figure 2 shows reliability growth from another perspective: F(Ti) asymptotically approaches a maximum value

as a function of test time Ti and mean time to failure (MTTF) increases monotonically as a function of Ti . We also
see that, based on MRE, F(Ti) is a more accurate predictor of reliability than MTTF for these data. The practical
application of these plots is see whether F(Ti) and MTTF behave as shown in Fig. 2. If they do not, the software
development process should be investigated to determine the cause of excessive faults.

B. Predict Reliability, Demonstrate Required Reliability and Predict Reliability Restoration Time
1. Reliability, R(Ti), Reliability to Meet Mission Duration, R(Ts + Tm), Rate of Change of Reliability
d[R(Ti)]/d(Ti)] Reliability Restoration Time, Ti

It is important to predict reliability and to predict the reliability that would be achieved for the duration of the
mission. For this purpose, the mission duration relevant for a given application should be used. In Fig. 3, Tm = 0.50
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(0.50 months or 15 days for a typical Shuttle mission is used). Furthermore, it is of interest to identify the test time
at which maximum reliability is achieved. In Fig. 3, this is accomplished by plotting the rate of change of reliability.
This test time corresponds to the point of maximum payoff of reliability versus test time (i.e., cost). Of course,
additional test time may be required to achieve the required reliability, but at diminishing returns to the investment
in testing. If the required reliability for the mission duration is not achieved, the software should be subjected to
additional testing to eliminate more faults.

If the specified reliability has been temporarily violated because of software failure, the restoration time – the
operational time necessary to restore software reliability to its required value – can be predicted. In Fig. 4, we show
the restoration time as a function of specified reliability for several OIs. As Fig. 4 shows, latter releases require more
restoration time. This is probably caused by the increasing functional complexity of the software across releases,
which reflects that each Shuttle release contains all the functionality of previous releases plus the added functionality

Fig. 3 Reliability R(Ti) and rate of change of reliability d[R(Ti)]/d(Ti) versus test time Ti.

Fig. 4 Restoration time Ti versus reliability R(Ti).
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of the current release. This plot would be used to predict whether the restoration time is acceptable for recovering
from a failure, based on the specified reliability.

C. Predict and Assess Progress in Fault Correction
1. Fault Correction Rate, ci , Fault Correction Delay, d(Ti), Proportion of Faults Corrected, Pci

Figure 5 demonstrates that, at the maximum fault-correction rate, the fault correction delay, and the proportion
of faults corrected stabilize (i.e., assume constant values) as a function of test time. This is a valuable relationship
because a reliability engineer can make these plots and identify the test time in which maximum progress is being
made in correcting faults.

2. Predicted Number of Faults Remaining, Rci

Figure 6 indicates that the greater functional complexity of later releases means the predicted number of remaining
faults is higher. This plot is useful for indicating whether the software should be deployed on a mission. If the remaining
faults are too high, as in the case of OI5, additional testing should be conducted until the remaining faults are predicted
to be acceptable (e.g., Rci = 1).

3. Predicted Fault Correction Quality, Qci

In Fig. 7, the predicted fault correction quality provides an overall assessment of the fault-correction process. This
metric increases as the number of faults remaining to be corrected decreases. If this plot does not asymptotically
approach a maximum with increasing test time, this would indicate an unstable correction process. In this case, the
cause of the problem would be identified and corrected, such as inadequate test cases. We observe that correction
quality becomes worse in a later release because of the aforementioned increase in functional complexity.

D. Perform Fine-grained Reliability Analysis
1. Predicted Number of Failures in Interval i, m(Ti), Predicted Normalized Number of Failures in Interval i,

M(Ti)

While reliability metrics based on cumulative values, such as cumulative failures, are useful for demonstrating
reliability growth, they do not provide a focused prediction of reliability in each test time interval i. For this purpose,
we use m(Ti). Now, while useful, m(Ti) does not account for the size of the software. Therefore, a companion
prediction is the normalized failures in the interval i, M(Ti).

Fig. 5 OI4: Fault correction rate ci, fault correction delay d(Ti), and proportion of faults corrected Pci versus test
time Ti.
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Fig. 6 Number of faults remaining to be corrected Rci versus test time Ti.

Fig. 7 Fault correction quality Qci versus test time Ti.

Figure 8 demonstrates that normalized predicted failures in interval i can vary considerably as a function of test
time. The main point of the variation from a reliability standpoint is the test time when M(Ti) begins to stabilize
(i.e., decreases towards zero). The increased functionality of OI8 versus OI3 means OI8 stabilizes later in the test
time. This plot is a tool in the arsenal of the reliability engineer for identifying the test time at which it is no longer
cost-effective to continue testing. These times are Ti = 30 and 45 for OI3 and OI8, respectively.

2. Actual Failure Rate, f (xi, Ti), Predicted Failure Rate, f (Ti)

Other metrics that allow us to focus on fine-grained analysis are actual and predicted failure rate, with the distinction
that the former estimates failure rate based on empirical (i.e., historical) failure data and the latter predicts future
failure rate based on estimating model parameters, using empirical data. We do not have the “future” available for
comparing the results produced by the two metrics, so we necessarily compute MRE over the empirical failure data
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Fig. 8 Normalized predicted failures in interval iM(Ti) versus test time Ti.

Fig. 9 predicted failure rate f(Ti) and actual failure rate f(xi, Ti) versus test time Ti.

range. These values of MRE are shown on Fig. 9, which indicates that OI51 has better prediction accuracy than OI8.
Also shown is PR, the higher values of which are associated with higher values of reliability (i.e., lower failure rate;
see above). This is the case in Fig. 9 where OI51 has both lower predicted and lower actual failure rates than OI8.

An important application of these plots is that, for both OIs, the predictions monotonically decrease, but this is
not the case for the actual rates. In the latter case, the failure rate can temporarily increase and then decrease, which
reflects changes to the software that are made over test time. Interestingly, this phenomenon is accounted for in the
Yamada S-shaped model that allows for an increase in failure rate [11]. If the reliability engineer has an application
with this failure data characteristic, the Yamada model could be used, which is described in [3].
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E. Assess Reliability Risk
1. Probability of xi Failures in Interval i, P (xi)

To assess the risk to reliability of the incidence of failures, we predict the probability of failures occurring in test
time interval i. Of course, the threat to reliability would occur in operational time and not in test time. However,
the idea of testing is to emulate, to the extent feasible, operational conditions. Therefore, with respect to realistic
operational testing in Fig. 10, the software would not be released for operational use at test time Ti = 4.90. Rather, we
would continue testing until there are no longer any spikes in the plot, at which time the software could be deployed.

F. Track Number of Faults Corrected
1. Cumulative Number of Faults Corrected, Nci

By tracking the cumulative number of faults corrected over test time we can determine whether this function
reaches a maximum asymptotic value early or late in test time. The former is preferable because it indicates an

Fig. 10 OI4: Probability of xi failures in interval iP(xi) versus test time Ti.

Fig. 11 Predicted number of faults corrected Nci versus test time Ti.
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accelerated fault correction process. This principle is illustrated in Fig. 11, in which OI3 produces the knee of the
plot earlier than OI8. In other words, this is a method for evaluating test effectiveness.

VI. Summary of Reliability Metric Results
We have defined and analyzed a myriad of reliability metrics, so it is necessary to document the major results

in Table 4 to identify: 1) the metrics that have the least variability across test time, as measured by the standard
deviation; 2) the metrics that have the greatest predictive validity, as measured by MRE; and 3) the releases (OIs)
that have the smallest predictive error, as measured by MRE. In some cases it is appropriate to use other measures,
such as maximum fault-correction rate. Some metrics do not appear in Table 4. These are metrics that are evaluated
better using a plot. In these cases, the reader is referred to the relevant figure. The best values per OI are in bold and
the best values per metric are in italics.

Although there is not a great deal of consistency in the results, we conclude that: 1) OI51 is the release with
the most consistent “best” metrics (e.g., low standard deviation for reliability) and 2) for metrics where MRE can
be computed, the metric predicted cumulative failures has the lowest prediction error. This is because cumulative
functions smooth irregularities in the data. A reliability engineer could use this approach to: 1) identify software
that is ready to deploy (OI51) and software that is not ready to deploy (OI8) and 2) rank reliability metrics by their
predictive validity, using MRE.

VII. Conclusions
We have described and evaluated many metrics. There were no dominant metrics in the set with respect to

producing the most desirable prediction (i.e., maximum fault-correction rate). Nor were there dominant metrics
with respect to minimum prediction error, although metrics based on aggregated failure values, such as cumulative
failure, provided marginally more accurate predictions. In contrast, we were able to identify a software release that
generally yielded better predictions and less error than other releases. Based on these results, we conclude that
the reliability engineer should evaluate several, if not many, metrics to ensure that those metrics appropriate for a
given application can be identified. Furthermore, the evaluated metrics should be used to predict reliability for the
various software releases to determine which software is ready to be deployed and which software requires further
testing.

Appendix

Fig. A1 Shuttle OI3: Ti 5% confidence intervals autocorrelation.
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Fig. A2 Shuttle OI4: Ti 5% confidence intervals autocorrelation.

Fig. A3 Shuttle OI5: Ti 5% confidence intervals autocorrelation.

Fig. A4 Shuttle OI6: Ti 5% confidence intervals autocorrelation.
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Fig. A5 Satellite JM1: Ti 5% confidence intervals autocorrelation.
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